Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

Development of Ultra Fine Grain Steel for Carburizing

1995-02-01
950209
The cold forging process is one of the most popular in the manufacture the automotive parts such as gears and shafts, cold forging saves material and machining costs by near-net shape the principle of forming. However, abnormal austenite grain growth sometimes occurs when the cold forged parts are heated for surface carburizing without a prior normalizing process. The size of the coarse grains can be large, sometimes ASTM Grain Size Number -2 to -4. The abnormal grain growth may cause post-carburizing distortion and is harmful to both fracture toughness and fatigue strength of the parts [1]. The purpose of our research was to develope new steels which would keep the fine grains during the carburizing treatment without normalizing. First, we studied the influence of elements on the grain growth property of case hardening steels and Naiobum (Nb) was selected as the element to control the grain growth. Secondly, we developed an ultra fine grain steel containing a small amount of Nb.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

Application of Hard Shot Peening to Automotive Transmission Gears

1992-02-01
920760
Although shot peening is an old technology, it has been revived in the Japanese automotive industry as a means to enhance the fatigue durability of steel components. Particular emphasis is on the application of “hard shot peening”. “Hard shot peening” is a high intensity peening technology which results in a higher magnitude of compressive residual stress and, therefore, greater fatigue resistance than conventional shot peening. The first area of development was in high performance carburizing steels suitable for hard shot peening. Desirable traits were enhanced by reducing the carburizing anomalies resulting from intergranular oxidation and by the enhancing case toughness. Further improvement of fatigue resistance has been accomplished by dual peening, first with hard shot followed by smaller diameter steel shot at a lower intensity. This paper also describes the development of long life shot media for hard shot peening.
Technical Paper

A Free Machining Titanium Alloy for Connecting Rods

1991-02-01
910425
Some fundamental research on alloy design of the new titanium alloy and process design such as forging and surface treatment were carried out in order to develop new titanium alloy connecting rods. Free machining Ti-3Al-2V alloy is the best alloy for connecting rods because it has mechanical properties equivalent to quenched and tempered medium carbon steels, a popular material for connecting rods. The alloy can be machined at higher speed than the most popular titanium alloy Ti-6Al-4V. Forging in the β phase temperature range is desirable to enable one heat forging of connecting rods and to eliminate crack initiation. New technology such as induction heating in forging, pickling after forging and coating on large ends were developed. As a result of this research, new titanium alloy connecting rods which can be applicable to mass production have been developed.
Technical Paper

Development of Lightweight Connecting Rod Based on Fatigue Resistance Analysis of Microalloyed Steel

1990-02-01
900454
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

High Strength Steel for Cylinder Head Bolt

1984-02-01
840573
JIS SCM440M (SAE4140H), heat treated to the strength level of 120 to 140 kgf/mm2(171 to 199 ksi) -ISO 12.9 class-, is currently used for cylinder head bolts of Japanese passenger cars. Lower alloy steels, such as SAE 1541 for example, have not been substituted for JIS SCM440H so far because of their high susceptibility to delayed fracture. Daido Steel has tackled this problem and succeeded in applying the lower alloy SAE 1541 steel to 12.9 class cylinder head bolts by enhancing the resistance to delayed fracture by reducing impurities, especially sulphur. In this paper mechanical properties and delayed fracture characteristics of SAE 1541-ULS (Ultra Low Sulphur) steel are reported. 1541-ULS (S<0.005%, S+P< 0.020%) shows outstanding resistance to delayed fracture compared to conventional steel. Furthermore, the amount of MnS inclusions decreases remarkably in ULS steel, which results in high toughness.
Technical Paper

Medium Carbon-Boron Steels for Automobile Components

1982-02-01
820123
In order to save molybdenum (Mo) in chromium - molybdenum steels for automobile components, medium carbon - boron steels were investigated. Boron is not a new alloying element for structural steels, however, to date boron steels have not been widely used because of their unstable hardenability and poor machinability. Therefore, in this paper, the optimum content of boron was reexamined, and also the appropriate addition of titanium as a stabilizer of boron was investigated from the view point of hardenability. Furthermore the upper limit of manganese (Mn) content was studied to keep good machinability. The new steel grades, established on the basis of the above fundamental research, have been used on vital components of passenger cars.
Technical Paper

A New Iron-Base Superalloy for Exhaust Valves

1981-02-01
810032
For heavy duty gasoline or diesel engines, exhaust valves of 21-2N or 21-4N are generally coated by cobalt-base hard facing alloys, at faces. But the sluggish supply and the spiraling price of cobalt recently forced automakers to adopt valves of high-grade superalloys without hard facing. Candidate superalloys for high-performance exhaust valves are gamma-prime strengthened nickel-base alloys such as Inconel 751 and Nimonic 80A. Unfortunately above-mentioned alloys are too expensive for automobile components. So authors tried to develop a gamma-prime strengthened iron-base alloy, which bears basically 40% Ni-19% Cr-Al-Ti. To optimize Al and Ti contents the effect of the total amount and the ratio of them was examined thoroughly on hardness, strength and corrosion resistance of experimental alloys at elevated temperatures.
X